If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2=810
We move all terms to the left:
5p^2-(810)=0
a = 5; b = 0; c = -810;
Δ = b2-4ac
Δ = 02-4·5·(-810)
Δ = 16200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16200}=\sqrt{8100*2}=\sqrt{8100}*\sqrt{2}=90\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90\sqrt{2}}{2*5}=\frac{0-90\sqrt{2}}{10} =-\frac{90\sqrt{2}}{10} =-9\sqrt{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90\sqrt{2}}{2*5}=\frac{0+90\sqrt{2}}{10} =\frac{90\sqrt{2}}{10} =9\sqrt{2} $
| 3+12-2f=7 | | 19x+5+42=180 | | 0.75n=1-0.25=-100 | | 72+4c=84 | | X+1/12x=65 | | x+25+65=180 | | 0.7(-0.39+9x)=6.8x | | 3s+2=12-25 | | 12=4w-8 | | 2(x-3)-4(3x-6)=12 | | 0.9(x-20)=839 | | 4v-6v=28 | | 3x+-11=59 | | y=50(1+0.25)^3 | | z+1/4=3/5 | | 3x+2x-7-10x=12 | | 3x-5(x-4)=-6+3x-9 | | -5.1=y-6.6 | | 8x-4=3-6x | | 3.4=y-1.5 | | −3=x−10 | | 6y-7=-1-8y | | x/3.5=3.5 | | -2x+4=2(x+3) | | n-20=140 | | 4q+6q=0 | | 0.04x+0.08(1500-x)=70 | | 2.8n=196 | | -0.5r-12=127 | | 15y+y=28 | | 6q-18=30q= | | -9=35+x |